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At present, it is obvious that different sections of nervous system utilize different methods for information coding. Primary afferent
signals inmost cases are represented in formof spike trains using a combination of rate coding andpopulation codingwhile there are
clear evidences that temporal coding is used in various regions of cortex. In the present paper, it is shown that conversion between
these two coding schemes can be performed under certain conditions by a homogenous chaotic neural network. Interestingly, this
effect can be achieved without network training and synaptic plasticity.

1. Introduction

Nervous system codes information in form of sequences
of spikes or spike trains. Therefore, analysis of information
processing in the brain is impossible without understanding
principles of information coding and principles of conver-
sion between different coding schemes, because it is well
known that nervous system uses different coding schemes for
transmitting information about stimuli, patterns, muscular
commands, and so on. These coding schemes are based on
two main approaches. In the first class of coding methods,
the exact relative position of different spikes on the time axis
is not taken into account, only their frequency or the sets of
neurons emitting them are important. On the contrary, the
other codingmethods utilize exact delays between individual
spikes. Let us call these two classes of codes asynchronous and
synchronous codes.

There are several schemes of asynchronous coding and
they are often used in combination. Rate coding is used
in many afferent and efferent parts of nervous system. In
this approach, intensity of a stimulus or command sent to a
muscle is represented as number of spikes per unit time. It
is the most explored coding method. Another asynchronous
coding method, population coding, is based on representa-
tion of a stimulus as episodes of increased activity of a certain
neuronal ensemble specific for this stimulus. It may be used

to code the fact of presence of some stimulus as well as its
strength, as a number of active neurons. For example, it is
known [1] that visual image moving direction is encoded
as activity of the respective neuronal ensembles in middle
temporal visual area of primates’ brain. Rate and population
coding can be considered as two sides of the general coding
scheme when presence and/or intensity of some stimulus is
expressed by increasing firing rate in certain population of
neurons. We will call this scheme rate/population coding. In
a specific variant of this scheme (sometimes referred to as
position coding), numeric parameter of a stimulus is coded
as position of the most active neurons in the ensemble. It was
noted that this type of coding has a number of advantages
compared to rate coding [2].

Synchronous coding (usually called temporal coding [3])
is based on the idea that precise relative timing of individual
spikes inside spike trains emitted by different neurons can
contain information about stimuli. This representation may
have different forms. The fact of presence of some stimulus
can be represented as a stable combination of spikes emitted
by certain neurons with fixed delays of spikes with respect to
other spikes (and therefore we can call this kind of temporal
coding the spatiotemporal coding). Continuous value can be
encoded as a time interval between two spikes, as a phase
shift between two spike trains, or a spike phase relative to
some global synchronizing signal. For example, hippocampal
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CA1 pyramidal cells code body spatial location by their firing
phase relatively to theta rhythm [4]. This coding method can
be called the phase coding. The fact that temporal resolution
of the neural code often has millisecond order of magnitude
[5] is an evidence of wide usage of temporal coding in
the brain. Most commonly used synaptic plasticity model,
spike-timing dependent plasticity (STDP [6]), assumes this
information coding scheme. Models of working memory
based on neuronal polychronization effect [7, 8] are also
naturally based on this codingmethod. Let us note that in this
paper we will consider spatiotemporal variant of temporal
coding only.

At present, it is evident that different sections of the
nervous system utilize different information coding schemes.
Primary afferent information encoded using rate- or pop-
ulation-based schemes is passed for processing to the cortex
zones where temporal coding is widely used. But commands
to muscles again should be represented as rate coded sig-
nals. It is also very probable that future intelligent systems
and devices based on spiking neural networks (SNNs), for
example, in robotics, will include components using vari-
ous coding schemes. Therefore, SNNs performing functions
of converter between different information coding forms
should be a necessary part of nervous system as well as
of these devices. However, in contrast with vast literature
devoted to information coding in SNNs, the number of works
considering conversion between different coding schemes is
surprisingly few. For example, in [9] it was discussed how
cortical bursting neurons could translate phase informa-
tion contained in precisely timed spike sequences into rate
coded signal. Relationship between rate and phase coding
schemes in ensembles of hippocampal pyramidal neurons
and translation from former to latter was explored in [10].
The question about which kind of networks could perform
translation from rate/population coding to spatiotemporal
coding seems to remain insufficiently explored until now.
General approach to solution of this problem was presented
by Izhikevich in [11] in relation to the so-called polychronous
neuronal groups (PNGs). The idea is that desired conversion
is performed by polychronous neuronal groups (populations
of neurons which are being activated emit spike trains with
precisely reproduced delays between individual spikes) exist-
ing or spontaneously emerging in chaotic neural network.
However, this work as well as the subsequent works devoted
to polychronization neither considered, to the extent of my
knowledge, concrete conditions under which this conversion
could be realized nor reported an experimental evidence of
its realization. Achievement of these goals was motivation for
the research reported here. The present work also uses poly-
chronization effect as a basis, like [11], but, besides that, as we
will see, it is shown in it that the network performing conver-
sion from rate/population coding to spatiotemporal coding

(1) may consist of leaky integrate-and-fire (LIF) neurons
which are much simpler than the neuron model used
in [11],

(2) may not be plastic (while STDP plasticity was used in
[11], it was noted there that synaptic plasticity can be
harmful because it makes the conversion unstable),

(3) does not need to be involved in global rhythmic
activity like theta rhythm in [4].

2. Materials and Methods

In this researchwe utilized one of the simplest and in the same
time the most widely used neuron model, leaky integrate-
and-fire (LIF) neuron with absolute refractory period (see,
e.g., [6]).

There are two kinds of neurons in the network: excita-
tory and inhibitory neurons. Axons of the excitatory and
inhibitory neurons are connected only to excitatory or
inhibitory synapses of other neurons, respectively. It is essen-
tial that postsynaptic spike emission is a result of collective
activity of sufficient number (we set this number equal to 6)
of presynaptic neurons. In order to use dimensionless units,
we assume that the threshold membrane potential value is
always equal to 1. To satisfy the above mentioned condition,
the maximum excitatory synaptic weight value was selected
equal to 0.19. Every individual synaptic weight was randomly
selected using uniform distribution in the range (0, 0.19).
Inhibitory synapse weights were also assigned with randomly
generated values uniformly distributed in the range (0,𝑊−).
Value of the maximum inhibitory weight 𝑊− was used as a
regulator necessary for maintaining balance of excitation and
inhibition in the network while numbers of inhibitory and
excitatory neurons were fixed. Namely, we used the network
consisting of 700 excitatory and 300 inhibitory neurons in
all the experiments. In case of small 𝑊− even slight input
signal or infrequent spontaneous firing causes avalanche of
spike emissions leading the network to the state of constant
self-sustaining activity with very high firing frequency. Great
𝑊
− values cause immediate suppression of network reaction

to any external signal. For every network configuration there
exists a threshold value of 𝑊− above which self-sustaining
network activity is impossible under any conditions. We
selected value of 𝑊− slightly higher than this threshold. In
our case, it corresponded to𝑊− = 10.

Time of spike propagation from neuron to neuron lied in
the range 1–10ms for excitatory connections and 1–3ms for
inhibitory connections that is close to physiological values.
Setting the spike propagation delays is considered below.

For sake of generality, the network should not have any
structure a priori taking into account properties of input
signal. In fact, the considered network has no intrinsic
structure at all; it is completely homogenous and chaotic
in the sense that all neurons of the same kind and all
connections between the same kinds of neurons (excitatory
→ excitatory, excitatory → inhibitory, etc.) have the same
distributions of weights, delays, connection probabilities, and
so forth. Besides, neuron’s axon can never be connected to a
synapse of the same neuron.

Source of external signals received by the network is an
array of its input nodes. Neurons are connected to them via
excitatory or inhibitory synapses.Through these connections
(we will call them afferent connections) neurons receive the
signal consisting of noise (random spikes with constantmean
frequency) and stimuli represented as short episodes of high
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frequency spiking of certain groups of input nodes. The total
number of input nodes was always the same and was equal to
1000. Ratio of excitatory and inhibitory input nodes was the
same as for neurons, 700/300.

Provided that the described conditions are met, selection
of sets of presynaptic neurons and input nodes was absolutely
random for every neuron.

Many SNN computer simulation experiments show that
distribution of synaptic delays is an equally important factor
determining network behavior as distribution of synaptic
weights. For example, it is crucial that the propagation
delay of inhibitory connections would be substantively less
than of excitatory connections; it is necessary to prevent
development of the powerful permanent global oscillatory
network activity which can suppress network reaction to
external stimuli (as it follows, e.g., from theoretical model
considered in [12]). However, if this requirement is satisfied,
the exact distribution of inhibitory connection delays does
not influence network properties significantly. On the con-
trary, selection of excitatory connection delays was found
to be very important so that we consider it more in detail.
As it was mentioned above, in our approach the key role in
realization of rate/population to temporal coding conversion
is played by PNGs. In [8], it was proposed to use SNNs
artificially enriched by potential PNGs due to specially tuned
excitatory propagation delays. Namely, excitatory neurons
were considered as located at random points on surface of
sphere or N-dimensional hypersphere and connection delays
weremade proportional to the spherical distance between the
neurons connected. Since PNGs are characterized by great
number of short paths between the same pair of neurons
such that the total delay in every path is (almost) identical,
this distribution of delays gives much greater number of
PNGs than totally random distribution. Similar to [8], in
this work we used 4-dimensional sphere neuron placement.
Experimental results considered in next section confirm
importance of this choice.

The input signal consisted of sequence of different stimuli
mixed with noise. Every stimulus was 30ms long and was
presented after network reaction to previous stimulus that
faded away completely (that was achieved due to proper
selection of 𝑊−—as was discussed earlier). Every stimulus
was a sequence of randomly generated spikes from set of
input nodes corresponding to this stimulus. The stimuli
were characterized by significantly higher spike frequency
comparatively to the background noise.

Advantage of the LIF neuron model is that it is very
simple. Model of its soma includes only two parameters: the
length of refractory period 𝑇 and the membrane potential
decay constant 𝜏. The former limits the maximum firing
frequency and is usually selected equal to few milliseconds.
We set𝑇 = 6ms.The latter determines the size of time period
during which arriving presynaptic spikes act together to
produce postsynaptic spike.This parameter varies in different
kinds of neurons [6], however, obviously, it cannot be great in
neurons forming PNGs which are based on very exact firing
timings. For this reason we set it to 3ms.

The general structural properties of the network are
summarized in Table 1.

Table 1: Parameters determining balance of excitation and inhibi-
tion in the network.

Excitatory
neurons

Inhibitory
neurons

Amount 700 300
Maximum synaptic weight
(for postsynaptic neurons) 0.19 10

Number of excitatory afferent
synapses/total effective weight1 300/28.5 300/28.5

Number of inhibitory afferent
synapses/total effective weight 10/50 30/150

Number of nonafferent excitatory
synapses/total effective weight 100/9.5 100/9.5

Number of nonafferent inhibitory
synapses/total effective weight 10/50 3/15

Synaptic propagation delays
(for postsynaptic neurons), ms 2–10 1–3
1It is the mean weight multiplied by the number of synapses.

Inhibitory input 
nodes

Inhibitory 
neurons

Excitatory input 
nodes

Excitatory 
neurons

Figure 1: Excitatory (green) and inhibitory (red) neurons, input
nodes, and synaptic connections. Size of blocks corresponds to
relative amounts of neurons and input nodes. Thickness of arrows
reflects total effective weights of the respective connections.

This table displays another important feature of the
described network related to the role of inhibitory neu-
rons. These neurons should not block network response to
external stimuli but should efficiently stop network self-
sustaining activity after end of stimulation. To reach this
goal, the inhibitory neurons are themselves strongly inhibited
by afferent signals, so that they almost do not fire during
stimulation. But their mutual inhibition is much weaker
than their inhibitory effect on the excitatory neurons (they
have only 3 nonafferent inhibitory synapses, while excitatory
neurons have 10). Therefore, just after the stimulus end the
inhibitory neurons begin to fire extensively and suppress the
whole network activity.The relative strength of excitation and
inhibition in the network is shown schematically on Figure 1.
The effect of this distribution of interneuron connections is
depicted on Figure 2. It shows averaged firing frequency of
excitatory and inhibitory neurons at different moments after
beginning of stimulus presentation.



4 Computational Intelligence and Neuroscience

0 10 20 30 40 50 60 70 80 90 100

Time from stimulus onset (ms)

Inhibitory
Excitatory

Figure 2: Dynamics of mean firing rate of excitatory (green)
and inhibitory (red) neurons after stimulus presentation. Stimulus
duration is 30ms.

Now let us return to the final goal of this work. We
see that the input signal is encoded in form of increased
firing frequency of certain populations of the network input
nodes. If every presentation of some stimulus activates a
PNG specific for this stimulus it means, in our approach,
that this stimulus is recoded to temporal form, since neurons
belonging to active PNG fire in strict sequence with exact
timings. Therefore, pursuing our goal we should solve the
problem of finding PNGs in the network, and, in particular,
the PNGs specific for the given patterns.

Basically, there are two different approaches to determi-
nation of PNGs inside a neural network [13].The firstmethod
is based on analysis of the network structural properties such
as synaptic delays and weights. In the second method the
recordings of firing times of neurons are analyzed in order to
determine stable repeating time-locked sequences of spikes
associated with active PNGs. We used the second approach
but implemented an alternative algorithm for PNGdetection.

Inmy terms, PNG is defined by a sequence (neuron id, fir-
ing time). Only excitatory neurons are included in PNGs. Let
us consider the stimulus 𝐴. Let 𝑃

𝐴𝑖

be a set of pairs (neuron
id, time after the beginning of 𝑖th presentation of the stimulus
𝐴) corresponding to all spikes emitted before presentation
of next stimulus. Set of all such sets corresponding to the
stimulus𝐴will be denoted asP

𝐴

= {𝑃
𝐴𝑖

}.Then the algorithm
for finding in P

𝐴

a PNG with support 𝑛(𝐺(P
𝐴

, 𝑛)) is the
following:

(1) create thematrix𝐶
𝑎𝑡

, initializing by 1𝑠 all its elements,
for which ⟨𝑎, 𝑡⟩ ∈ 𝑃

𝐴1

, and by 0𝑠, all the rest elements.
(2) Iteratively for each 𝑖, 2 ≤ 𝑖 ≤ 𝑁

𝐴

, find the shift 𝑠, for
which the value of ∑

⟨𝑎,𝑡+𝑠⟩∈𝑃𝐴𝑖

𝐶
𝑎𝑡

is the greatest, then
increment by 1 those 𝐶

𝑎𝑡

, for which ⟨𝑎, 𝑡 + 𝑠⟩ ∈ 𝑃
𝐴𝑖

.
(3) If ∀𝑡∀𝑎𝐶

𝑎𝑡

< 𝑛, then𝐺(P
𝐴

, 𝑛) = 0, else if ̆𝑡 is the least
𝑡, for which 𝐶

𝑎𝑡

≥ 𝑛, then ⟨𝑎, 𝑡 − ̆𝑡⟩ ∈ 𝐺(P
𝐴

, 𝑛) ⇔

𝐶
𝑎𝑡

≥ 𝑛.
This algorithm can be illustrated by the following simple
example (Figure 3). The upper row of this figure represents
3 fragments of firing history of 4 neurons (𝑥-axis represents
time), each fragment includes 4 time steps. Filled squares
denote firing.The lower row displays thematrix𝐶

𝑎𝑡

after step
1 of the algorithm and after 2 iterations on step 2. Gray squares
in its final variant correspond to 𝐺(P

𝐴

, 2).
Using this algorithm the PNGs 𝐺(P

𝐴

, 𝑛) are found. But
we are interested only in the PNGs specifically reacting to

only one stimulus. Let us define activity of the PNG 𝐺 in
the history fragment 𝑃

𝐴𝑖

as 𝐴
𝐴𝑖

(𝐺) = max
𝑠

|shift(𝐺, 𝑠) ∩ 𝑃
𝐴𝑖

|,
where shift(𝐺, 𝑠) is built from 𝐺 by addition of 𝑠 to second
elements in all pairs in 𝐺. Then the strength of reaction of 𝐺
to the stimulus 𝐴 can be defined as 𝑅

𝐴

(𝐺) = min
𝑖

𝐴
𝐴𝑖

(𝐺),
and the measure of selectivity of 𝐺(P

𝐴

, 𝑛) as 𝑆(𝐴, 𝑛) =
𝑁
𝐴

/|{⟨𝐵, 𝑖⟩ : 𝐴
𝐵𝑖

(𝐺(P
𝐴

, 𝑛)) ≥ 𝑅
𝐴

(𝐺(P
𝐴

, 𝑛))}|. It is evident
that if reaction of 𝐺(P

𝐴

, 𝑛) to any stimulus different from
𝐴 is weaker than 𝑅

𝐴

(𝐺(P
𝐴

, 𝑛)), then 𝑆(𝐴, 𝑛) = 1. It can be
readily seen that the algorithm determining PNGs and their
selectivity has complexity 𝑂(𝑇𝑁

𝐹

𝑁
𝑆

𝑁2
𝑃

), where 𝑇 is time
between presentation of consecutive stimuli,𝑁

𝐹

is number of
all stimuli presentations, 𝑁

𝑆

is total number of spikes in the
whole firing protocol analyzed, and𝑁

𝑃

is number of different
stimuli.

Recoding process was declared as successful if for every
stimulus a PNG with selectivity 1 was found. For every
PNG we recorded its size and strength of its reaction to
the corresponding stimulus (in the relative units, divided
by the size of this PNG). The latter parameter has meaning
of the minimum part of the PNG becoming active after
stimulus presentation. Besides that, it is important to know
to what degree these PNGs are independent; how the fact
that a neuron that belongs to one PNG changes probability
to find it inside some other PNG. If PNGs are independent
it means that network has enough informational capacity
to be able to convert greater number of different stimuli
without loss of accuracy. Also, in case of numerous stimuli,
independent PNGs are less similar and therefore permitmore
reliable recognition of encoded stimulus. To characterize the
degree of independence of two PNGs we use sets of neurons
belonging to them, 𝑆

1

and 𝑆
2

. If the PNGs are independent
then size of the intersection of 𝑆

1

and 𝑆
2

equals approximately
(|𝑆
1

||𝑆
2

|)/𝑁+, where 𝑁+ is the total number of excitatory
neurons. As a measure of dependence between two PNGs we
take the ratio of real size of their intersection and this value.
Proximity of the calculated number to 1 is an indication of
their independence.

In all described experiments, determination of PNGs and
measurement of their parameters were performed for 100
presentations of every stimulus. Results of these experiments
are discussed in next section.

3. Results and Discussion

In the discussed experiments we varied 3 basic parameters
of the input signal: number of different stimuli, intensity
of stimuli (in terms of spike rate and population size), and
signal/noise ratio. Only stimulus duration was always equal
to 30ms. It is close to duration of shortest stimuli recognized
by living neural systems [14, 15].

The main goal of these experiments is to demonstrate
that the desired conversion can be performed by the network
described in previous section and that the effect is stable
and observed under wide range of conditions, not just for
carefully prepared specific signal. For this purpose it is quite
sufficient to use star experiment design scheme starting
from some point and varying different parameters separately;
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Figure 3: Determination of PNG with support 2 on 3 fragments of firing history of 4 neurons.

here we are not interested in exact dependencies of conver-
sion characteristics on signal parameters, coupling effect of
parameters, and so forth. The starting point corresponded
to 10 stimuli, 100 input nodes per one stimulus, 300Hz
stimulus spike frequency, and 3Hz background noise (that
corresponds to signal/noise ratio = 10). Effect of variation of
different parameters is considered in the following subsec-
tions.

3.1. Informational Capacity

3.1.1. Dependence of Conversion Quality on Number of Differ-
ent Stimuli. The experiments were performed with number
of different stimuli varying from 3 to 1000 (which is greater
than the number of excitatory neurons in the network!). In
all the experiments the conversion was successful; a PNG
with selectivity equal to 1 was found for every stimulus.
The detailed results for this experiment series are shown on
Figure 4.

The most unexpected result is weak dependence of
conversion quality on number of stimuli converted, even
when there are more stimuli than excitatory neurons in the
network. Average size of the polychronous groups perform-
ing the conversion was about 130. At least 20–25% of the
respective PNG is activated after every presentation of the
stimulus converted. All these PNGs are almost independent,
although all points on the bottom plot are slightly above 1:
it means that if a neuron belongs to some PNG it has a
bit more chances to enter some other PNGs. Nevertheless,
proximity of the average relative PNG intersection to 1 in all
experiments is an indication that the network could convert
successfully the number of stimuli significantly greater than
the number of its neurons (however, in order to prove it
experimentallymuch longer computation is required because
computation time of the PNG detection algorithm described
above is proportional to square of the number of different
stimuli and even for 1000 stimuli the computation time was
about 1.5 days).

3.2. Dependence of Conversion Quality on Stimulus Intensity.
In case of uncorrelated presynaptic activity, LIF neuron
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Figure 4: Conversion from rate/population coding to temporal
coding in case of various numbers of different stimuli. The 𝑥-axis
displays the number of stimuli using logarithmic scale. Length of
the vertical lines drawn from the experimental points corresponds
to standard deviation of the respective measured parameter.

behaves like a unit with sigmoid transfer function (with
respect to spike rate). It is silent (in models without spon-
taneous firing) when presynaptic spikes are rare and fires
with the maximum possible frequency determined by its
refractory period in case of very frequent presynaptic spikes.
Transfer between these “nothing” and “all” states may be
more or less sharp: it depends on membrane potential decay
time 𝜏 and average contribution of one presynaptic spike to
membrane potential. In our case when 𝜏 is small (3ms) and
average synapse contribution is below 0.1 (while threshold
membrane potential is set to 1), the sigmoid is rather sim-
ilar to step function. For example, by decreasing stimulus
spike frequency to 100Hz, we observed that considerable
number of stimulus presentations did not cause any network
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Table 2: Effect of increased stimulus intensity.

Number of
input nodes
per stimulus

PNG size Relative PNG
reaction strength

Relative PNG
intersection

100 165 ± 72 0.207 ± 0.02 1.09 ± 0.28

300 121 ± 55 0.247 ± 0.12 1.15 ± 0.6

reaction. The same effect took place when we decreased
number of input nodes per stimulus to 30. Naturally, under
these conditions the network cannot operate as a converter.
Probably, ability of the network to convert weaker stimuli
could be facilitated by using more complex neuron models
with threshold membrane potential adaptation [16] or based
on homeostatic synaptic plasticity [17].

On the contrary, increasing intensity of stimuli due to
enlarging subset of input nodes corresponding to one stim-
ulus only improves the conversion quality. In experiments
with 300 input nodes per stimulus all stimuli had PNGs
with absolute selectivity, and reaction strength of these PNGs
was significantly greater than that for 100 input nodes per
stimulus, although some PNGs showed tendency to stick
together under this condition. The corresponding data are
gathered in Table 2.

3.3. Influence of Background Noise. In the last series of the
experiments we varied level of background noise in the range
1Hz–30Hz. It was senseless to perform experiments with
noisemore intensive than 30Hz because under this condition
inhibition level in the network became insufficient and the
network demonstrated ceaseless strong activity.The results of
these experiments show that the conversion process is very
stable with respect to noise. Although, naturally, conversion
under condition of strong noise (30Hz noise corresponds to
the signal/noise ratio equal to 1) has lower quality in terms
of PNG response strength and degree of PNG independence,
but, nevertheless, for all stimuli in all experiments PNGs with
absolute selectivity were found.

The respective experimental data are represented in
Figure 5.

3.4. Randomization of Excitatory Connection Delays. Proba-
bly, the most unexpected result obtained in this study is that
synaptic plasticity was found to be unnecessary for achieving
our goal. Indeed, the inventor of the term “polychronization”,
Izhikevich, used synaptic plasticity (in fact, two kinds of it:
long-term and short-term) in his experiments ([7] together
with Szatmáry, [11], and others). Plasticity helped to highlight
relatively rare neuron connections constituting PNGs in the
ocean of other chaotic connections. We can hypothesize that
since in our case the special selection of excitatory synaptic
delays discussed abovemakes relative amount of PNGsmuch
greater, itmakes the positive effect of plasticity less important.
In order to confirm this hypothesis, we performed experi-
ments similar to ones considered above but with randomized
values of delays in excitatory connections. Namely, after the
network had been created using the rules described in the

previous section, the delays of all its excitatory synapses
were randomly permuted that made the network completely
chaotic. Under these conditions, PNGs were detected but
they lost their selectivity. To illustrate it quantitatively, we
measured part of stimuli for which selective PNGs were
found. Values of this parameter for different number of
stimuli are shown in Figure 6. For each number of stimuli
the experiment was repeated 10 times. We see that only the
easiest experiment with 3 different stimuli was successful
from the point of view of our selectivity criterion. It would
be interesting to understand why the observed dependence
is not monotonous but detailed exploration of properties of
completely chaotic networks has no direct relation to main
subject of this research.

Also, it should be noted that in this study we used the
very simple simulation of input signal; it is possible that
future research where we plan to work with more realistic
sensory signals will require implementation of some forms of
synaptic plasticity in mymodel. Indeed, the primary purpose
of this study was to demonstrate how a simple homogenous
SNN can convert signal from rate/population coding form
to temporal code. But, if to consider this work in context
of research efforts directed at simulation of integration and
processing of multimodal real-world sensory information
flows, then the next step should be creation of software
model of sufficiently rich informational environment for
the studied SNNs and reproduction of the reported results
under thesemore realistic conditions. It wouldmake possible
incorporation of working memory mechanisms based on
PNGs [7, 8] as the next layer of the whole SNN-based
information processing system because these mechanisms
assume temporal coding of stimuli memorized.

4. Conclusions

Thus, it was discovered in this work that under certain
conditions chaotic and homogenous network consisting
of simple LIF neurons can convert signal encoded using
rate/population-based scheme to a form based on temporal
coding. It is important because each of these two forms of
information coding is very common for many (but differ-
ent) parts of central nervous system. It is interesting that
synaptic plasticity and learning are not required for successful
recoding. Presence of global synchronizing signal propagated
across the whole network is also not necessary.

In my approach the recoding process is considered as
selective activation of a polychronous neuronal group specific
for the given stimulus encoded using rate/population coding
scheme.Therefore, it is essential that the network is enriched
by potential PNGs due to special selection of propagation
delays in excitatory interneuron connections; namely, these
delays have values proportional to distances between the
neurons as if they were placed at random points of imag-
inary sphere (see the details in [8]). Appropriate choice of
numbers of inhibitory synapses for excitatory and inhibitory
neurons, their weights, and propagation delays (see Table 1
and Figure 1) are also very significant, because inhibitory
neurons play an important role in this construction; they
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Figure 5: Conversion from rate/population coding to temporal coding under conditions of different background noise intensity (in Hz). It
is displayed on the 𝑥-axes using logarithmic scale. Length of vertical lines corresponds to standard deviation of the respective parameter.
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Figure 6: Part of stimuli for which PNGs with selectivity equal to
1 were found in case of SNN with randomized delays. The 𝑥-axis
displays the number of stimuli using logarithmic scale. Each point
corresponds to 10 experiments.

should stop uncontrolled growth of excitation leading to
permanent senseless activity of the network while permitting
the pronounced network reaction to stimulus presentation
(Figure 2).

In our approach, the selective PNGs are determined by a
specially designed novel algorithm. It has linear complexity
with respect to the main dimensions of the problem except
the number of different stimuli (it has complexity propor-
tional to square of this parameter).

The described above computational experiments con-
firmed that stable and quality conversion is performed by the
described network in great range of stimuli parameters.
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