
LA - a Clustering Algorithm with an Automated Selection of Attributes, 
which is Invariant to Functional Transformations of Coordinates 

 
 Mikhail V. Kiselev 

Megaputer Intelligence Ltd., 38 B.Tatarskaya, Moscow 113184 Russia 
megaputer@glas.apc.org 

 
Sergei M. Ananyan 

IUCF, Indiana University, 2401 Sampson Lane, Bloomington, IN 47405 USA 
sananyan@indiana.edu 

 
Sergey B. Arseniev 

Megaputer Intelligence Ltd., 38 B.Tatarskaya, Moscow 113184 Russia 
megaputer@glas.apc.org 

 
 

ABSTRACT 
 

A clustering algorithm called LA is described. The LA algorithm can be 
applied to the data represented as a set of values of attributes. The algorithm 
is based on comparison of the n-dimensional density of the data points in 
various regions of the space of attributes p(x1,...,xn) with an expected 
homogeneous density obtained as a simple product of the corresponding one-
dimensional densities pi(xi). The regions with a high value of the 

ratio
p x x

p x p x
n

n n

( ,..., )

( )... ( )
1

1 1

 are considered to contain clusters. The attributes may 

be of either numerical or non-numerical (categorical) type. A set of attributes 
which provides the most contrast clustering is selected automatically. The 
results obtained with the help of the LA algorithm are invariant to any 
clustering space coordinate reparametrizations, i. e. to one-dimensional 
monotonous functional transformations ′ =x f x( ). Another valuable 
property of the algorithm is the weak dependence of the computational time 
on the number of data points. The LA algorithm is implemented in the 
PolyAnalyst data mining system. 
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1. Introduction. 
 
Clustering is one of the typical problems solved by data mining methods [Cheeseman 
1990; Jain, Dubes 1988]. This is the process of grouping cases or database records into 
subsets such that the degree of similarity between cases in one group is significantly 
higher than between members of different groups. These groups are called clusters. An 
exact definition of the similarity between cases, as well as other details, vary in different 
clustering methods. For example, some algorithms include every case in some cluster 
while others recognize only the most dense groups of similar records without including 
the rest of cases in any cluster; some methods can obtain clusters that overlap and so on.  

At present various clustering algorithms are utilized. Most often used algorithms can 
be roughly associated in the following groups. 

1. Joining methods. In these methods smaller clusters are consequently merged in 
larger clusters. Initially each data point represents a single cluster. During each step of the 
algorithm two clusters are selected which are closest with respect to some metrics and are 
unified into one new cluster. The process continues until a certain specified number of 
clusters remains. Various modifications of the algorithm use different measures of 
distance between clusters, for example, maximum euclidean distance between points 
belonging to different clusters, mean euclidean distance or minimum euclidean distance. 

2. K-means methods. These methods find an a priori specified number of clusters 
such that the variation of attribute values inside clusters would be significantly less than 
the variation between clusters. The significance of this difference is evaluated in terms of 
p-values. The algorithm exchanges data points between clusters in order to increase the 
clustering significance (to decrease the respective p-value). 

3. Seeding algorithms [Milligan 1980]. In these methods a certain number of initially 
selected data points serve as the seeds for growing clusters. These algorithms also 
generate an a priori specified number of clusters. In the beginning each cluster consists of 
only one selected point (a seed). During one step of the algorithm each cluster associates 
a data point which is the nearest one in terms of a certain affinity measure. A cluster stops 
growing when there remains no more sufficiently close points. 

4. Density-based algorithms. The space of attribute values is broken into a set of 
regions. Those regions which have significantly higher point density are considered as 
containing clusters of data points. 

5. Algorithms based on neural networks. Various neural network architectures have 
been proposed for the solution of clustering problems. The examples of these 
architectures are ART (adaptive resonance theory) [Carpenter and Grossberg 1987; 
Williamson 1995] and its various modifications, SOM (self-organizing maps) [Kohonen 
1995], counterpropagation [Hecht-Nielsen 1990], and a number of others. 

Yet, despite the variety of the approaches and methods, practical data mining 
problems require further improvement of clustering algorithms. In our opinion, many 
modern clustering algorithms have the following weak sides: 

1. High computational complexity. The computational time of many clustering 
algorithms depends on the number of records at least as O(N2). This becomes a very 
serious problem when databases with a hundred thousand or million records are explored. 



2. Insufficient performance with multi-dimensional data. In databases where 
every record contains a large number of numerical, boolean and categorical fields the 
right choice of attributes for the clustering procedure often determines the quality of the 
result obtained. Some fields may be completely irrelevant for breaking the data into a set 
of clusters, some fields may be highly correlated, etc. An automated selection of several 
attributes most crucial for clustering out of, say, hundreds of fields present in the database 
would be a very desirable feature for clustering algorithms implemented in a data mining 
system. Yet only a few of existing algorithms offer such a possibility. 

3. Sensitivity to functional transformations of attributes. Suppose we would like 
to find clusters in a database describing customers of some retailer. Every customer is 
described by her or his age and monthly income. These variables are measured in 
different units. Since many clustering algorithms use euclidean metrics, which in our case 

can be written as distR R A age age income income( , ) ( ) ( )1 2 1 2
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different choice of the constant A would give us a different set of clusters. The standard 

attribute normalization transformation ′ = −
x

x x

xσ
 which makes all numerical attributes 

centered at 0 with the dispersion equal to 1 does not solve the problem. The use of this 
transformation would imply that the constant A depends on dispersions of variables. 
Therefore the elimination of even a single data point with the value of x deviating 
strongly from x  may significantly influence the result of clustering. Besides, it is evident 
that clustering performed in terms of (age, log(income)) instead of (age, income) leads in 
general to completely different results. Even a linear reparametrization of attributes can 
change the results. This can hardly be considered a good feature because it makes us 
doubt that the results of clustering procedure are objective enough. 

4. Lack of effective significance control. The clustering procedures implemented in 
many existing data mining systems and statistical packages find clusters even in the data 
consisting of artificially generated random numbers with a uniform distribution. It would 
be highly desirable that clusters found by data analysis systems express objective and 
statistically significant properties of data - not simply statistical fluctuations.  

In the present paper we describe a clustering algorithm called LA (the abbreviation 
stands for Localization of Anomalies - point density anomalies are implied), which is free 
of the drawbacks listed above. In section 2 we cover the techniques underlying the 
algorithm. The properties of the LA algorithm are discussed in section 3. Section 4 
contains two examples of application of LA algorithm. Finally, we present our conclusion 
in section 5. 

 
 

2. Automated clustering of database records including multiple numerical and non-
numerical fields. 
 
Prior to discussing our algorithm we say a few words about our understanding of the term 
"cluster". In many approaches a set of clusters found by the corresponding algorithm 
should be considered as a property of the concrete dataset which was explored. An 
individual cluster is characterized completely by the set of datapoints that belong to it. 



We consider a cluster as a region in the space of attribute values which has a significantly 
higher concentration of datapoints than other regions. Thus, it is described mainly by 
boundaries of this region and it is assumed that other sufficiently representative datasets 
from the universum of data belonging to the same application domain will also have a 
higher density of points in this region. Therefore the discovered set of clusters may not 
include all the records in the database. Beside that, the problem of the determination of 
statistical significance of the clustering becomes very important. 

In our approach each cluster is represented as a union of multi-dimensional 
rectangular regions described by a set of inequalities x < a or x ≥  a for numerical fields x 
and by a set of equalities c = A for categorical fields c.  

Our algorithm is applied to a database DB which can be logically represented as a 
rectangular table with N rows and M columns. This set of attributes (columns) will be 
denoted as A. First we consider databases with numerical fields only. Some remarks 
concerning the extension of this method to categorical variables will be given below. 
Thus, database DB can be represented as a finite set of points in the M-dimensional 
space ℜ M. Coordinates in ℜ M will be denoted as xi, i=1,...,M. 

The LA algorithm consists of two logical components. The purpose of the first 
component is the selection of the best combination of attributes xi which provides the 
most significant and contrast clustering. The second component finds clusters in the space 
of a fixed set of attributes xi. We begin our consideration with the second component. 

Suppose that we fix m attributes from M attributes presented in the database DB. It 
will become clear later that we should impose the following important limitation on the 
number of attributes:  

 
1 1

2 3< ≤m Nlog .        (1) 
 
The inequality shows that the more records exist in the database, the higher-

dimensional clusters can be discovered. This does not mean that the algorithm described 
below cannot be used for a successful analysis of databases with a greater number of 
attributes. One should keep in mind that the first component of the LA algorithm selects 
the best m attributes out of the total number M of all database fields. 

Our approach is based on breaking the space of attribute values ℜ m in a certain set of 
regions {Ei} and comparing the density of points in each region Ei. Namely, we cut ℜ m by 
hyperplanes xi = const and take the rectangular regions formed by these hyperplanes as Ej. 
We call such set of regions the grid {Ei}. The hyperplanes forming the grid may be 
chosen by various methods. However it is important that datapoints would be distributed 
among the cells Ei as evenly as possible. We use the system of hyperplanes satisfying the 
following four conditions: 

1. Every axis should be divided by at least three hyperplanes. 
2. Every coordinate axis is intersected by the same number of hyperplanes. Let us 

denote this number H - 1. Thus, the grid is determined by a matrix Aij with m rows and H 
- 1 columns so that the j-th hyperplane intersecting the i-th coordinate axis is defined by 
the equation xi = Aij. 

3. For each i, the hyperplanes xi = Aij cut ℜ m to H slices in such way that the numbers 
of datapoints in different slices would be as close to each other as possible. 



4. The number of cells in the grid {Ei} should be approximately equal to the average 
number of datapoints in one cell and therefore should be close to N . This represents a 
reasonable compromise between the roughness of the found cluster structure and the 
representativeness of the point subpopulation in each cell. 

It can be easily shown that condition (1) is a consequence of these requirements. 
Consider one cell Ei. Let n be the number of datapoints in this cell. The cell Ei can be 

considered as a direct product of the attribute axes segments: Ei = S1 × … × Sm. Let us 
denote the number of points with the value of the j-th attribute falling into the segment Sj 
as Mj. If the points do not form clusters in the space of attributes xi which are considered 
as independent then the relative density of points in Ei, is approximately equal to 
multiplication of one-dimensional relative densities of points in segments Sj:  

 

n
N j

m
mp

M M

N
≈ = 1... .        (2) 

 
A significantly higher value of n

N  would indicate that Ei should be considered as (a 
part of) a cluster. In the case of m = 1 the approximate equality (2) is trivially exact. Thus 
the minimum dimension of the clustering space m is 2. To find clusters consisting of 
rectangular regions with anomalous point density we use the following procedure. 

For each cell Ei with the number of points greater than Np
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 we 

calculate the probability that the high density of points in this cell is a result of the 
statistical fluctuation. Namely, we determine for each cell Ei the value of 
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) ( , , )1  where b(k, K, p) is a tail area probability of the 

binomial distribution with the number of trials K and the event probability p. A list of all 
Ei ordered by ascending values of si is created. Denote the ordered sequence of the 
intervals as { ′Ej}. For each cell ′Ej we know the number of points lying in the cell, nj, 

and the value of pj. For each j we calculate value s b n N pCUM
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denote the value of j for which sCUM j
 is minimal as jBEST; this minimum value of sCUM j

 

will be denoted as sBEST. This value corresponds to the most contrast, most significant 
division of all cells Ei into "dense" and "sparse" ones. Let us consider the cells ′Ej with j 

≤ jBEST. In this set of cells we search for subsets of cells Ck such that all of them satisfy the 
following conditions: 1) either the subset Ck contains only one cell or for each cell E 
belonging to the subset Ck there exists another cell in Ck which has a common vertex or 
border with cell E; 2) if two cells belong to different subsets they have no common 
vertexes or borders. We call these subsets clusters. 

Thus, for each subset a of attributes a ⊂  A, |a| = m satisfying the condition (1) we can 
determine a set of clusters C(a), the clustering significance sBEST(a), and the total number 
of points in all clusters K(a). Now let us discuss the procedure which selects the best 



combination of attributes for clustering. The purpose of this procedure is finding a subset 
of attributes which has the maximum value of some criterion. In most cases it is natural to 
choose 1 - sBEST as such a criterion. Other possible variants are the number of points in 
clusters or the number of clusters. It is often required that the clustering procedure should 
elicit at least two clusters and also that 1 - sBEST should be greater than a certain threshold 
confidence level. It is obvious that in order to satisfy the first requirement each coordinate 
should be divided in at least three sections. Depending on the actual conditions of the data 
exploration carried out (possible time limitation) various modifications of the procedure 
can be utilized. We consider two extreme cases. 

a. Full search. All combinations of m attributes (1 1
2 3< ≤m Nlog ) are tried. The 

best combination is selected. 
b. Linear incremental search.  
Step 1. All combinations of two attributes are tried. The best pair is included in  list 

of selected attributes SEL. The respective value of the criterion will be denoted as 
R(SEL). 

Step 2. If | | logSEL > 1
2 3 N  or SEL includes all attributes the process stops and 

 SEL is the result. 
Step 3. All combinations of attributes consisting of all the attributes from SEL 

 plus one attribute not included in SEL are tried. Let the best combination be 
 SEL SEL′ = ∪ { }a . If R R( ) ( )SEL SEL′ ≤  the process stops and SEL  is 
selected as a final set of attributes. 

Step 4. Set SEL SEL= ′  and go to Step 2. 
 
An abundance of intermediate variants of this procedure can be constructed. 
The presence of non-numerical (unordered) attributes does not change the algorithm 

significantly. The discreteness of the attribute means that the respective axis is already 
divided to segments corresponding to different values of the attribute. Thus, in this case 
the grid cells are defined by inequalities x < a or x ≥  a for numerical attributes and by 
equalities c = A for categorical attributes. Only the following serious modification of the 
algorithm should be made. Since the values of categorical attributes are unordered the 
dense grid cells are merged into clusters on the basis of numerical attribute values only. 
For this reason in the set of attributes selected for clustering at least one attribute should 
be numerical. 

 
 

3. Properties of LA algorithm. 
 
It can be easily proven that the considered LA algorithm has the following properties: 

 
1. If we replace a numerical attribute x with its functional derivative f(x), where f is a 

monotonous function and use f(x) instead of x, this will not change the clustering results. 
The algorithm will detect the same number of clusters and the same sets of records will 
enter the same clusters. 

 



2. The computational time depends on the number of records N only weakly. The 
measurements show that the most time consuming operations are the sorting of the values 
of attributes when the grid {Ei} is constructed and the determination of si values for each 
grid cell Ei. The former operation requires O(mNlogN) time, the latter - O N( ). In the 
asymptotic region N → ∞  the first operation provides the main contribution. The exact 
computational time of LA algorithm depends on the version of the procedure used for 
selecting the best attributes. One can see that for a fast linear search the computational 
time is O(M3NlogN); for the most slow full search it is O(2MMNlogN) (when N >> 32M). 
We can see that the dependence on the number of records is quite weak while the 
dependence on the number of fields is much stronger even for the faster modification of 
the algorithm. 

 
3. The LA algorithm works best in the case of a great number of records. The less 

records are explored, the less fine cluster structure is recognized. In the worst case, when 
a cluster of the size approximately equal to one cell is intersected by a hyperplane it may 
not be detected by the algorithm. 

 
4. The LA algorithm is noise tolerant. Indeed, the algorithm is based not on the 

distances or other characteristics of single points but on the properties of substantial 
subsets of data. Thus an addition of a relatively small subpopulation of points with 
different statistical properties (“noise”) cannot influence the results obtained by the 
algorithm substantially. 

 
 

4. Examples. 
 
The high efficiency of the LA algorithm for the solution of practical data mining 
problems has been confirmed by its successful application in several fields. At present the 
LA algorithm is implemented as a data exploration engine in the PolyAnalyst data mining 
system [Kiselev, Ananyan, Arseniev 1997; Kiselev 1995]. It was most often used for 
customer profiling, analysis of electorate and similar problems requiring the exploration 
of demographic information. The experience of the application of the LA algorithm 
shows that the algorithm performs best for the analysis of large databases (with 20,000 or 
more records). In the case of smaller databases the discovered cluster structure may be too 
rough. In this section we consider two sample clustering problems. The first one 
illustrates the application of the LA algorithm to the analysis of a demographic database; 
in the second example a small artificially generated database is explored. 

 
Example 1. In this example we analyzed the public domain data included in the 

machine learning benchmark database set of the University of California, Irvine available 
at its WWW site (http://www.ics.uci.edu/~mlearn/MLSummary.html). 
The database named “ADULT” contains general demographic information on 32,561 
people, supplemented by the data about their incomes. The data was donated by the US 
Census Bureau.  



The results of clustering this database using the LA method are shown in Table 1. 
Two attributes have been chosen for clustering: age (columns) and education level 
expressed by numbers (rows). Each cell displays the number of cases (database records) 
belonging to the cell. The shaded cells correspond to four clusters found. We can see a 
cluster that includes high school and college students, a cluster that consists of older 
people having professional school education, the largest cluster that consists of qualified 
professionals whose education increases proportionally to age, etc. We can see that the 
algorithm is based on a relative density of points. Say, the upper left cell with 296 records 
is included into cluster while the cell two rows below, containing 663 records, is not 
included. 

 
 

Table 1. Clustering US Census Bureau database using LA algorithm. 
 

<20.5 20.5-23.5 23.5-26.5 26.5-29.5 29.5-32.5 2.5-35.5 5.5-38.5 38.5-41.5 41.5-44.5 44.5-48.5 48.5-53.5 53.5-59.5 >=59.5
<6.5 296 147 138 173 162 143 147 127 121 172 243 303 473
6.5-8.5 558 96 102 89 96 102 82 62 55 81 97 79 109
8.5-9.5 663 702 767 851 861 941 865 769 655 836 920 781 890
9.5-10.5 861 958 558 504 533 520 519 478 497 532 493 411 427
10.5-12.5 27 175 190 239 250 239 258 235 184 231 184 110 127
12.5-13.5 3 278 592 514 514 479 492 452 458 503 413 323 334
>=13.5 2 6 77 145 161 213 220 295 304 367 366 272 284

 
 
 
Example 2. Using this example we try to illustrate the limits of applicability of the 

LA algorithm, and measure its ability to detect small diffuse clusters in small databases. 
This example deals with the artificially generated random data including two numerical 
fields - x and y, 0 ≤ x, y ≤ 1. The set of points includes four subsets with different point 
distribution laws: 



a. Uniformly distributed points, N = 300 (“noise”). 
b. Normally distributed points with the center at (0.09, 0.743) and dispersion 0.1, N = 

253 (“small sharp cluster”). 
c. Normally distributed points with the center at (0.86, 0.926) and dispersion 0.1, N = 

2150 (“large sharp cluster”). 
d. Normally distributed points with the center at (0.571, 0.114) and dispersion 0.3, N 

= 184 (“small diffuse cluster”). 
The total number of points is 2,887. The results obtained by the LA algorithm are 

shown on Figure 1. The position and dispersion of the three clusters are denoted by 
circles. The LA algorithm elicits two clusters. The respective rectangular regions are 
shaded on the figure. We see that while the algorithm localized the large sharp cluster 
satisfactorily, it could not distinguish between two other clusters and merged them in one 
cluster. Since these clusters include much fewer points, the size of the grid cells in the 
regions with low and average values of x and y is quite large when compared with the size 
of the clusters. This fact complicates the exact identification of clusters b and d, which is 
a difficult task because of the diffuseness of these clusters. Nevertheless, the obtained 
result allows us to conclude that while the main application area of the LA algorithm is 
large databases it works reasonably well also in the case of a few thousand records. 

 

Figure 1.  Clustering randomly generated data. 



5. Conclusion. 
 
We have described a new algorithm for finding clusters in data called LA. Our algorithm 
can select automatically an optimal subset of the database fields for clustering. The 
algorithm is invariant to a monotonous functional transformation of numerical attributes 
and has a weak dependence of the computational time on the number of records in the 
database. The algorithm is based on the comparison of the n-dimensional density of the 
data points in various regions of the space of attributes with an expected homogeneous 
density obtained as a simple product of the corresponding one-dimensional densities. The 
LA algorithm is implemented as a component of the PolyAnalyst data mining system. As 
a module of this system it has been successfully applied in the fields of banking, database 
marketing, and sociological studies. An empirical evaluation shows that the algorithm 
furnishes the best results when relatively large databases (with 20,000 or more records) 
are explored. 
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