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A B S T R A C T

The present paper describes the learning technique used in
PolyAnalyst - the system of machine discovery and intelligent analysis
of the experimental/ observational data which has been created in the
Computer Patient Monitoring Laboratory at the National Research
Center of Surgery. PolyAnalyst is a multi-purpose system designed to
solve the following classes of problems: 1) construction of a procedure
realizing the mapping from the set of descriptions to the set of parameters
given by the pairs <description, parameter>; 2)  search for the
interdependences between components of the description; 3) search for
characteristic features of a given set of descriptions. Here the description
means a single experimental/ observational data record and it is assumed
that all the records in the same set of observations have the same structure.
The paper is devoted mainly to PolyAnalyst’s application to the type 1
problems. This type includes classification, empirical law inference,
choice of the best decision from a fixed set of possible decisions, and
other tasks. To solve a problem PolyAnalyst constructs and tests
programs on a simple functional programming language whose inputs are
the descriptions and outputs are the corresponding parameter values.
While searching for the solution PolyAnalyst combines full search,
heuristical search, and direct construction of the programs. Since the first
version of PolyAnalyst was created it has solved a number of real
problems from chemistry, medicine, geophysics, and agricultural science.
One example is given in the paper - the prediction of the elasticity of the
polyethylene samples from their infra-red spectrums.
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1. Introduction

Since 60s when machine learning began existing as a science the great

diversity of methods and systems has been proposed varying in the form of

training examples, the degree of autonomy, the use of existing formalized

knowledge about application domain, the form of learned information, and

other features. However the "density" of research is not the same over all the

range of the machine learning tasks. In particular this density is still low in the
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fields where the problems of recognition of the complex multi-factor

interdependences in the bodies of the experimental/observational data should

be solved under condition of sparse or absent model knowledge and under

minimum guidance from a human. It is especially true for the cases, when the

structural properties are important and the possibility to perform desired

experiments is limited. The main difficulty of these problems is determined by

the fact that since the type of sought dependence is not known a priori the

solution has to be sought in the space of procedures realizing various depend-

ences. In this situation the possibility to construct the solution directly is limited,

therefore the search in very wide spaces should be used. Although on the other

hand the search in the sets of procedures can be combined with the use of more

effective methods in some their wide subsets. For example, they may be the sets

of procedures equivalent to the predicate calculus formulae or to the rational

functions. 

The present research is devoted to use of methods based on the search in

the space of procedures for solution of real problems of the empirical law

inference and machine learning. Its aims include the effective search strategies,

the principles of selection of the best search directions, and the methods of the

direct synthesis of desired procedures.

The last years are marked by significant increase of research activity in the

field of automated knowledge acquisition, machine discovery, and automated

inference of models. The present paper does not include a thorough literature

review - it would require a lot of space. Good review of research before 1989

can be found in (MacDonald, Witten, 1989). There exists a number of systems

which infer the dependences between variables constituting training examples

(as a rule in the form of rational functions). The most famous ones are BACON

(Langley, Zitkov, Bradshaw, Simon, 1986), ABACUS (Falkenhainer,

Michalski, 1990), FAHRENHEIT (Zitkov, Zhu, 1991). The description of

another interesting machine discovery technique can be found in (Phan, Witten,

1990). There are various approaches which use the extensions of the classic

declarative formalisms to achieve more expressive power (see, for example,

extension of the predicate calculus in (Michalski, 1993)). The system ARE

which synthesizes functional programs in the process of search for the solution

is described in (Shen, 1990). The problem of discovery of structural regularities

in data is close to the grammar inference problem - see, for example, (Wolff,

1987). At last many works are devoted to the theoretical aspects of problem of

the recursive functions inference (Jantke, 1987). Summarizing it should be

noted that all these works touch only different instances of the general problem

of the program synthesis as the universal approach to learning from examples



and machine discovery. Besides that only few systems (for example,

FAHRENHEIT) are reported to have the real-world applications. The present

paper is an attempt to show that the search in the space of procedures built from

the domain-specific sets of primitives with the help of the universal production

schemes can serve as a basis for a universal data analysis system capable of

solving the real problems from the various fields.

The paper is organized in the following way. Section 2 contains the

description of the functional programming language in which PolyAnalyst

formalizes constructed procedures. Section 3 explains how the search in the

space of procedures is organised. Methods used to avoid the tautologies and the

families of equivalent procedures are enumerated. In Section 4 the heuristics

which determine the search priorities are described. Section 5 is devoted to the

principles of direct construction of procedures by subdividing the initial task to

a number of the simpler subtasks. Since almost every constructed program

contains constants it in general represents a family of procedures. This fact

makes the evalutaion of a new program the non-trivial task. The evaluation

procedure is described in Section 6. At last Section 7 is devoted to one of

PolyAnalyst’s applications.

2. The internal functional programming language.

The PolyAnalyst system synthesizes procedures. A procedure can be

described as an object with some number of inputs and outputs (number of

outputs should be not less than 1). The simplest procedures are called primitives.

Sets of primitives can be different for different tasks and are determined by the

structure of analysed data and features of application field which are specified

in the domain definition (DD) file (see Section 7). Every input and output of

procedures has a data type associated with it. It should be one of the data types

defined for the given task in the DD file. New procedures are constructed from

existing ones with the help of several (4 in the present version) production

schemes (Kiselev, Kiseleva, 1990). These production schemes and other

features of the language resemble John Backus’ FP formalism (Backus, 1978).

The production schemes are illustrated by the diagrams below in which the solid

rectangles denote procedures used to build the new procedure and the lines with

the arrows denote the data streams.



a. Functional composition.
Input and output data types should

match. It is also true for the other

production schemes below. 

b. Conditional execution. If the

value of the COND  input is true then

execute the procedure else copy some

input values to outputs.

c. Unconditional loop. Put on

some inputs of the procedure all

possible combinations of values

admissible for their data types sub-

sequently and sum all values returned

by the procedure. Naturally, the data

types associated with these inputs

should be discrete and finite. This

construction is suitable to realize the

predicate calculus quantors,

integration, and other operations.

d. Conditional loop. Execute the

procedure and test the value of its

output marked as COND . If it is false
then stop else copy values from outputs

to inputs and begin new iteration. The

outputs of the new procedure are all

the outputs of the old procedure except

the COND  output (which is always

false  at the end of execution).

3. The search.

For every procedure built by the PolyAnalyst system a measure of its

complexity is defined. The procedures are built in the order of increasing

complexity. The heuristical search subsystem of the PolyAnalyst can reevaluate

this complexity measure in accordance with certain heuristics (see the next

Section) and due to this mechanism can change the search order. Thus, this



value called dynamical complexity is a sum of the true complexity of procedure

and some heuristical corrections. The true complexity of a procedure is a sum

of the complexities of the primitives entering it and the complexities of the

production schemes which have been used for its creation.

It is obvious that to be operable the system should have the mechanisms

which would recognize tautologies and equivalences of procedures and exclude

tautological or equivalent procedures from the search. Further the tautologial

procedures and procedures which are equivalent to ever found ones will be

denoted by the term ’reducible’. It should be noted that these mechanisms are

especially important for the PolyAnalyst because of the strong combinatorial

growth of synthesized procedures. During the period of creation of the

PolyAnalyst the great efforts were made to provide it with the effective multi-

level system sifting away the reducible procedures. The performed tests show

that the existing mechanism recognizes and eliminates practically 100% of the

reducible procedures in the first 7 generations.

It includes the following components.

a. The production schemes are applied in the order which excludes the

explicit "syntactic" equivalences. For example, if we have  the three procedures

A, B, and C, all with one input and one output then the procedure corresponding

to their composition A(B(C(.)))  could be built by the two ways - as a

composition of A(B(.))  and C(.) , and as a composition of A(.)  and B(C(.)) .

The system recognizes such situation and uses the second way only.

b. Every input and output of procedures is marked not only by its data type

but also by the other attribute called the ’algebra type’. This attribute helps to

avoid the "local" equivalences based on the identities which include several

primitives. For example, the primitives "+", "=", and "-" are bound by the

identity (a+b)=c <=> b=(c-a). The program which realizes the "functional

composition" production scheme contains the rules which prohibit certain

combinations of input and output algebra types. In  the example mentioned

above the system builds only the left hand side procedure because the output

algebra type of the "-" primitive and the input algebra type of the "=" primitive

are incompatible.

c. Symmetry of the primitive inputs can be specified. The mechanism which

builds new procedures determines the symmetries of constructed procedure

knowing the symmetries of its components. It allows to eliminate the "symmetry-

based" equivalences such as a&b <=> b&a. Since the primitive "&" is declared

symmetric only one variant is built. 

d. It is possible to declare that connection of two inputs of the certain

primitive with the same variable (an output of some procedure or a loop variable)



leads to tautology. The system will not build the procedures contaning such

fragments. For example, a&a <=> a.

e. It is the consequence of the general results of the theory of algorithms

that in general the equivalnce of two procedures cannot be proven by recursive

use of a finite set of rules like in a.-d. For this reason these exact "syntactic"

methods are supplemented by the inexact methods based on the selective

execution of the procedure for various combinations of the input values. These

methods are called inexact in the sense that while they are able to recognize all

the reducible procedures some not reducible procedures may be also

erroneously determined as reducible. However in practice the risk to reject a

"good" procedure can be minimized to reasonable values by increasing the

number of performed random tests. One of these methods determines if some

input of a procedure does not influence its output. If the test executions show

that the output value of a procedure does not depend on some of its input for all

tried combinations of values on the other inputs the procedure is declared

tautological and discarded.

f. For all new procedures the returned values are calculated for definite set

of the standard input value combinations. The returned values are used to

calculate some procedure’s characteristic value called procedure’s signature. If

two procedures have equal signatures they may be equivalent. In this case a

number of tests is carried out and if in each test the values returned by the both

procedures are equal the procedures are considered equivalent and the more

complex one is discarded. 

4. Heuristics determining the search priorities.

The heuristical rules of the dynamical complexity re-evaluation used in the

PolyAnalyst system are divided into two cathegories. The heuristics from the

first cathegory re-evaluate the dynamical complexity of procedures on the basis

of their certain structural features. Their importance is determined by the fact

that not all synthesized procedures can be a solution even potentially. For

example, the procedure  a & ( b=c)   constructed from two primitives "&" and "="

can not be a solution because it has no access to the analyzed data. To become

a candidate for a solution (such procedures are called the complete procedures)

it should be linked with some procedures which have access to the data through

the special data access primitives. It is natural that percentage of incomplete

procedures increases with the growth of complexity of built procedures. If not

to take appropriate measures the system wastes more and more time constructing

the incomplete procedures which will never be completed. The heuristics



increase the dynamical complexity of the incomplete procedures proportionally

to number of steps necessary for their completion.

The heuristics from the second cathegory evaluate a procedure applying it

to the training examples. They can decrease as well as increase the dynamical

complexity and can change radically the search priorities.

The three of them are most important:

ˆ If a procedure has been found to be a solution of some task in the given

application field (or it may be one of the subtasks - see the next Section)

decrease its dynamical complexity and to a lesser degree compexity of its

parents and children.

The last two heuristics use a parameter of procedure called the enthropy of

returned values (ERV). To calculate this number a procedure is applied to all

training examples subsequently. Then ERV is the enthropy of the distribution

of these values.

ˆ If a procedure has low ERV values for many combinations of constants

entering it increase its dynamical complexity.

The third heuristics uses the ratio ERV/ERVrand  where ERVrand   is ERV

calculated not for the real examples but for generated set of the random

examples. The random examples have the same structure as the real examples

but consist of random values distributed by the same law as respective values in

the real examples.

ˆ If a procedure has high ERV/ERVrand  value decrease its dynamical

complexity.

It should be noted that the case when ERV/ERVrand  is close to zero may

be also interesting. It means that the built procedure expresses some specific

property of the analysed data. Finding such characteristic properties can be the

main aim in some tasks.

The additional opportunities to recognize the valuable procedures appear

in the case when a measure of closeness of found procedure to the solution can

be defined. This case includes the problem of inference of empirical depend-

ences in bodies of data belonging to the "continuous" domains where the real

numbers play important role. In this class of problems the standard error of

prediction is a natural measure of closeness to the solution. The following search

strategy has proven to be effective under such conditions. Two search processes

run concurrently. The first one is the search process described in the previous

section. It can roughly be called the breadth-first search. The second one takes



as a starting point the best (in terms of standard error) procedure found by the

first process. For any procedure a set of transformations can be determined

which do not increase the standard error. These transformations are called not

worsening transformations (nWT). The second search process applies all

possible nWT’s to the best procedure. The derived procedure with the least

standard error and the least number of the additional parameters is considered

the best obtained solution. When the first process finds new best procedure the

second process takes it as a new starting point and performs new nWT-search.

The operation continues until desired standard error level is reached.

5. Subtasks and direct construction of procedures.

Despite the heuristics and other mechanisms which help to cut off not

perspective search branches it is impossible to reach the solution if it is very

complex not using some effective direct methods. The following scheme has

proven to be effective in many cases: search -> task subdividing -> attempts to

solve the subtasks -> construction of the solution from the solutions of the

subtasks.

At present we use the following task subdividing strategies.

a. Suppose that the system has found a number of procedures each of which

solves the task not over the whole set of training examples but over some its

subsets so that all these subsets together overlay the full set of examples

completely. Then the system initiates the new task of classification of training

examples to these subsets. If it finds the solution of this subtask then the solution

of the initial task is composed from the subtasks solutions in the obvious way.

b. Suppose that the system has found a procedure which returns the correct

value being applied to each training example but with different values of the

constants entering it. In this case the system can try to find the procedures

realizing the mapping from the set of training examples to the desired values of

the constants. After successful solution of these subtasks the final solution is

constructed through the "functional composition" production scheme (a. in

Section 2).

c. Suppose that the same situation occurs as in b. The system can choose

the other way to use it. It forms new set of training examples adding to the

existing examples the respective values of procedure’s constants. Assuming that

all new examples belong to some class it tries to solve the respective classification

task. If the system finds its solution the solution of the initial task is constructed

through the "conditional loop" production scheme.



6. Evaluation procedure.

After a new procedure has been constructed it is compiled to effective

machine code. When it evaluates a new procedure PolyAnalyst calls it like the

C language function. 

As was mentioned in Introduction since a constructed procedure can include

the constants it realizes a set of different dependences parametrized by values

of these constants. To determine if the set contains the solution is therefore

non-trivial problem. To solve this problem the present version of the

PolyAnalyst system scans over all combinations of the discrete constants and

for each combination it performs hill-climbing in the space of the continuous

constants.

7. Example of PolyAnalyst’s application. Dependence of the mechanical
properties of polymeres on their IR-spectrums

The PolyAnalyst system

has solved a number of

problems in chemistry of

polymeres. For example, it is

given with a number of the IR-

spectrums of the polyethylene

films and the values of the

elasticity of the corresponing

samples (see Fig.1). The

system should find a formula

expressing dependence of

elasticity on some spectral

parameters. This task was

solved by the PolyAnalyst

version which worked only

with discrete data. Therefore

the spectral curves had to be

transformed to some sets

of discrete parameters.

The problem of discre-

tization of continuous

data appears in many AI

Fig.1.  The examples of the IR-spectrums of the

polyethylene films. The numbers are values of

elasticity of the respective samples.



tasks - see an example of the discretization procedure in (Catlett, 1991). We

used the following scheme. The investigated spectral band was broken to NX

intervals. For each interval the average intensity, the intensity dispersion, and

the number of peaks were calculated. Then the range of intensity was also

broken to NY intervals. Correspondingly the average intensities and the

intensity dispersions were transformed to the integeres from 0 to NY-1. After

this procedure every spectrum was represented by the three-sectional raw of

the integers. The first section contained NX values of discretized average

intensities, the second section contained NX discretized intensity dispersions,

the third section contained NX values of numbers of peaks in the respective

spectral interval. To determine the optimal values of NX and NY the following

consideration was used. To write the first two sections 2NXlog2NY bits is

necessary. We calculated the information gain (IG) for each spectrum and for

different NX, NY values and selected those NX, NY values which gave the

maximum information gain per bit (IG/2NXlog2NY).

To start search for a solution the system should know the structure of the

examples, the set of primitives, and the set of data types. This information is

supplied in so called domain definition (DD) file. The DD file for our case is

shown on the Fig.2. The section DATA_TYPES contains names of data types

and their ranges. In our case NX = 4, NY = 11. Here "band" is the spectral

interval number. In the section ORDER the properties of the data types are

specified. This information is necessary to generate correct set of primitives.

For example, for the "intensity" data type the whole set of the arithmetical

operations is generated while for the "band" data type only the operators "next",

"previous", "equal to", and

"less than" are defined. The

section QUANT allows the

loop variables of types "band"

and "intensity". At last the

ASS_INSTRUCTIONS

section fixes the three-

sectional structure of the

examples. It also contains the

verbal definition of meaning of

the sections. The names of data

types and example sections are

used when the obtained de-

pendence is translated by the

PolyAnalyst to the "pseudo-

.DATA_TYPES
N=0-10
band=0-3
intensity=0-10

.ORDER
band=STRAIGHT
intensity=ADDITIVE

.QUANT
band,intensity

.ASS_INSTRUCTIONS
band->intensity, of average level in $0
band->L, there is high dispersion in $0
band->N, of peaks in $0

.END 

Fig.2 . The DD file for the "IR

spectrums" domain.



english" verbal

form (see below).

It should be added

that after the

discretization the

dispersion values

became 0s and 1s

only so that they

are treated as

boolean (L).

To solve this

task (represented

by spectrums of

47 polyethylene

samples with known elasticity) the PolyAnalyst computed during several hours.

The solution is shown on the Fig.3. At present the verbal representation

produced by the PolyAnalyst is far from perfect - it is direct projection of the

respective internal language structures. However if to make all recursive

substitutions the following formula can obtained. Elasticity = -79.8 * out + 398.

±  81.870 where ’out’ is the value returned by the following procedure.

out = ( N of peaks in band # 0)   -  







Npeaks in b.# 2 if low dispersion in b.# 0
else
(Npeaks in b.# 2) ∗  4

It can be expressed also as

out = (Npeaks in b.#0) - Npeaks in b.#2 * (1 + 3 * dispersion in b.#0)

The PolyAnalyst is able to determine if the set of training examples is too

small. One of the simplest methods is following. It generates the pairs <spectral

data, elasticity> in which the both components are from the real examples but

are randomly mixed. The same task is solved for this randomized set also. If the

found solution gives the close value of standard error the solution of the main

task cannot be considered reliable. This test is performed for several different

randomized training sets.

Beside the tasks from chemistry of polymeres the PolyAnalyst has solved

a number of real tasks from medicine, geophysics, and agricultural science.

***** FB#381
MEANING:
#o0 is N $A - $B where

$A is N of peaks in #0
If not $D then $B is $C;
else $B is N $C * #1
where

$C is N of peaks in #2 
$D is there is high dispersion in #3 

THIS IS TARGET !!
inputs: 0 4 2 0 

BEST RESULT reached by FB #381 operands: 0 4 2 0
res=-79.8*out+398. ±  81.870

Fig.3 . The "pseudo-verbal" form of solution



8. Conclusion.

Our research shows that it is possible to organize effective search in the

space of procedures and use it for the real-world applications. The following

factors are the most important for the systems based on this approach:

ˆ effective mechanisms of avoidance of trivial and equivalent procedures;

ˆ reliable principles of selection of the search priorities;

ˆ combined use of search and direct inference of programs;

ˆ combination of the universal search technique in the procedural spaces and

special methods applicable to their subsets equivalent to some declarative

formalisms.

The working mechanisms which realize the first three prnciples in the

PolyAnalyst system were described in the paper. The mechanism realizing the

effective search technique in the sub-spaces which are equivalent to the set of

the predicate calculus formulae and the set of the rational functions is developed

now.
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